April 2014



Earth Global warming: A new NASA study shows Earth's climate likely will continue to warm during this century on track with previous estimates, despite the recent slowdown in the rate of global warming. Read more ....

Cosmic microwave background cosmic inflation: Almost 14 billion years ago, the universe we inhabit burst into existence in an extraordinary event that initiated the Big Bang. In the first fleeting fraction of a second, the universe expanded exponentially, stretching far beyond the view of today's best telescopes. All this, of course, has just been theory. Read more ....

Robotic fish Soft robots: Soft robots - which don't just have soft exteriors but are also powered by fluid flowing through flexible channels - have become a sufficiently popular research topic that they now have their own journal, Soft Robotics. In the first issue of that journal, MIT researchers report the first self-contained autonomous soft robot capable of rapid body motion: a "fish" that can execute an escape maneuver, convulsing its body to change direction in just a fraction of a second, or almost as quickly as a real fish can. Read more .....

Cartoon Cartoons and health: Researchers from the University of Southampton have shown that cartoons could be a beneficial way of educating patients and empowering them to cope better with their long term conditions. Read more ....

Razor clam Learning from animals: The Atlantic razor clam uses very little energy to burrow into undersea soil at high speed. Now a detailed insight into how the animal digs has led to the development of a robotic clam that can perform the same trick. Read more ....

Laurie Barge Life origin: How life arose from the toxic and inhospitable environment of our planet billions of years ago remains a deep mystery. Researchers have simulated the conditions of an early Earth in test tubes, even fashioning some of life's basic ingredients. But how those ingredients assembled into living cells, and how life was first able to generate energy, remain unknown. Read more ....




How did life arise?

Fuel cells may have answers

How life arose from the toxic and inhospitable environment of our planet billions of years ago remains a deep mystery. Researchers have simulated the conditions of an early Earth in test tubes, even fashioning some of life's basic ingredients. But how those ingredients assembled into living cells, and how life was first able to generate energy, remain unknown.

A new study led by Laurie Barge of NASA's Jet Propulsion Laboratory in Pasadena, demonstrates a unique way to study the origins of life: fuel cells.

Fuel cells are found in specialized cars, planes and NASA's human spacecraft, such as the now-retired space shuttle. The cells are similar to batteries in generating electricity and power, but they require fuel, such as hydrogen gas. In the new study, the fuel cells are not used for power, but for testing chemical reactions thought to have led to the development of life.

"Something about Earth led to life, and we think one important factor was that the planet provides electrical energy at the seafloor," said Barge. "This energy could have kick-started life -- and could have sustained life after it arose. Now, we have a way of testing different materials and environments that could have helped life arise not just on Earth, but possibly on Mars, Europa and other places in the solar system."

Barge is a member of the JPL Icy Worlds team of the NASA Astrobiology Institute, based at NASA's Ames Research Center in Moffett Field. The team's paper appeared online March 13 in the journal Astrobiology.

One of the basic functions of life as we know it is the ability to store and use energy. In cells, this is a form of metabolism and involves the transfer of electrons from one molecule to another. The process is at work in our own bodies, giving us energy.

Fuel cells are similar to biological cells in that electrons are also transferred to and from molecules. In both cases, this results in electricity and power. In order for a fuel cell to work, it needs fuel, such as hydrogen gas, along with electrodes and catalysts, which help transfer the electrons. Electrons are transferred from an electron donor (such as hydrogen) to an electron acceptor (such as oxygen), resulting in current. In your cells, metal-containing enzymes -- your biological catalysts -- transfer electrons and generate energy for life.

In the team's experiments, the fuel cell electrodes and catalysts are made of primitive geological material thought to have existed on early Earth. If this material can help transfer electrons, the researchers will observe an electrical current. By testing different types of materials, these fuel cell experiments allow the scientists to narrow in on the chemistry that might have taken place when life first arose on Earth.

"What we are proposing here is to simulate energetic processes, which could bridge the gap between the geological processes of the early Earth and the emergence of biological life on this planet," said Terry Kee from the University of Leeds, England, one of the co-authors of the research paper.

"We're going back in time to test specific minerals such as those containing iron and nickel, which would have been common on the early Earth and could have led to biological metabolism," said Barge.

The researchers also tested material from little lab-grown "chimneys", simulating the huge structures that grow from the hydrothermal vents that line ocean floors. These "chemical gardens" are possible locations for pre-life chemical reactions.

When the team used material from the lab-grown chimneys in the fuel cells, electrical currents were detected. Barge said that this is a preliminary test, showing that the hydrothermal chimneys formed on early Earth can transfer electrons - and therefore, may drive some of the first energetic reactions leading to metabolism.

The experiments also showed that the fuel cells can be used to test other materials from our ancient Earth. And if life did arise on other planets, those conditions can be tested, too.

"We can just swap in an ocean and minerals that might have existed on early Mars," said Barge. "Since fuel cells are modular -- meaning, you can easily replace pieces with other pieces -- we can use these techniques to investigate any planet's potential to kick-start life."

At JPL, fuel cells are not only for the study of life, but are also being developed for long-term human space travel. Hydrogen fuel cells can produce water, which can be recycled and used as fuel again. Researchers are experimenting with these advanced regenerative fuel cells, which are highly efficient and offer long-lasting power.

Thomas I. Valdez, who is developing regenerative fuel cells at JPL, said, "I think it is great that we can transition techniques used to study reactions in fuel cells to areas such as astrobiology."

(Source: NASA Jet Propulsion Laboratory news release)



Some useful links for
your career:


  • Union Public Service Commission - www.upsc.gov.in
  • IIT-Kharagpur - www.iitkgp.ac.in
  • Indian Statistical Institute - www.isical.ac.in
  • Indian Institute of Technology Madras - www.iitm.ac.in
  • Indian Institute of Management, Ahmedabad - www.iimahd.ernet.in
  • Indian Institute of Mass Commission - www.iimc.nic.in
  • IIT Bombay - www.iitb.ac.in
  • Indian School of Mines, Dhanbad - www.ismdhanbad.ac.in
  • Birla Institute of Technology, Ranchi - www.bitmesra.ac.in
  • Central Institute of Fisheries Nautical and Engineering Training - www.cifnet.nic.in
  • Indian Institute of Information Technology, Allahabad (Deemed University) - www.iiita.ac.in
  • Central Marine Fisheries Research Institute, Kochi - www.cmfri.com
  • Tata Institute of Social Sciences, Mumbai - www.tiss.edu

DISCLAIMER: The contents of this website are for informational purposes only. Although due care is taken, the correctness and accuracy cannot be guaranteed. The science and medical research articles are for informational purposes only, aimed at kindling an interest in science. They are not intended to provide any kind of advice.